〈12 回連載 ショートレクチャー〉

若手技術者のための研削工学

(第11回) 高能率化・高精度化を目指して

奥山繁樹 (防衛大名誉教授)

1. はじめに

研削加工の進歩の方向は, 高能率化・高精度化, 多 機能化・複合化,自動化・知能化,そして環境負荷の 低減に向かっているものと思われる.

これらを実現するために研削盤本体では、①回転と 直線運動のさらなる高精度化と高速化,②機械構造の 高剛性化と減衰性能の向上, ③目的に応じた構造の 大型化/超小型化, ④ 多軸化・多機能化・複合化, ⑤ 省エネ化などが進められている. また, 計測・制御と自 動化技術に関しては、⑥工作物と砥石の自動交換、⑦ 加工環境・加工状態の計測・監視とこれに基づく適応 制御, ⑧ピッチ誤差, 力・熱変位, 多軸運動誤差などの 自動補正などが試みられており、最終的には、⑨意思 決定を含めた研削の知能化が追究されよう.

また, 研削砥石とその使用技術に関しては, ⑩微細 多結晶砥粒の開発, ⑪新しい難削材に対応した砥材 の開発, ⑫結合材の砥粒保持力向上と高靱性化, ⑬ 超高速回転対応、⑭切れ刃を配列した砥石の開発、⑮ ELID (Electrolytic In process Dressing)技術の適用拡 大、⑩総形整形のさらなる高精度化などがある.

研削液とその供給法に関しては、 の環境にやさしい 油剤の開発, 18MQL (Minimum Quantity Lubrication), ⑩超高圧注液などが、また加工技術に関しては、⑩極 微細加工, ②超精密曲面加工, ②難削材・複合材加工 の高能率化などがある. さらに、 23他の加工エネルギを 複合(援用)した研削技術の開発・実用化などが行われ ている.

本稿では上記に関わるいくつかのトピックス、すなわ ち高能率研削の主要な方法論と, 超精密研削技術(砥 石回転とテーブル送りの超精密化, ELID 研削, 超砥 粒配列砥石)について概説する.

2. 高能率研削

単位時間あたりの工作物除去体積は,除去深さtと 工作物速度 νの積で与えられるから, この両者を大きく すれば加工能率が上がる.しかし,研削盤の剛性には 限度があることや,研削熱の影響が無視できないことな どから、tかvのどちらかを大きくすることが行われてい る. 前者がクリープフィード研削,後者が高速反転研削 である. また, 砥石周速度を超高速化することによって 加工能率の向上を図る, 超高速研削も試みられている.

一方,加工能率を上げるには砥石と工作物が実際に 接触するまでのエアカット時間やテーブル反転時のオ ーバランなどの無駄時間を排除したり、段取り替えに伴 う非加工時間を圧縮したりすることもまた重要である。

2.1 クリープフィード研削

クリープフィード研削は、切込み深さを通常の100~ 1000 倍と大きく, 逆に工作物速度を 1/10~1/100 と小さ くして研削する方法である.図1に、クリープフィード平 面研削盤の一例を示す. クリープフィード研削では, 砥 石と工作物の接触長さが極端に長くなり,接触面温度 も高くなりやすいので、研削液を高圧で供給したり、多 孔質の軟らかい砥石を使用したりする必要がある. 一

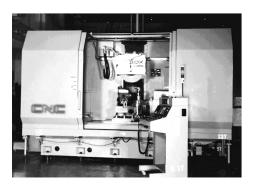


図1 クリープフィード研削盤の一例

方, 砥粒最大切込み 深さが非常に小さいの で,加工条件によって は研削比の増大が期 待できる.

2.2 高速反転研削

研削盤テーブルの 往復回数は通常10~ 100 往復/min 程度で あるが,高速反転研

図2 スピードストローク研削 によるコンタリング研削の例

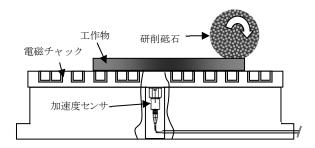


図3 砥石自動接近・テーブル反転適応制御 システムの加速度センサ設置状況

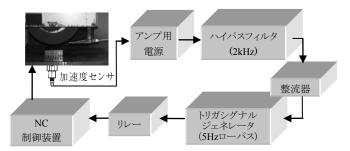


図4 砥石自動接近・テーブル反転制御システムの構成

削では500~1000往復/min に達する. テーブル の高速反転は、高加減速リニアモータ、クランク 機構などによって実現されている.

高速反転研削には, 反転のたびに切込みを入 れるハイレシプロ研削と、一定速度で切込みを入 れ続けるスピードストローク研削がある. リニアモ ータを用いたシステムの場合には、テーブル反転 時のオーバランをコントロールできることから, 寸 法の小さい工作物のプランジ研削や金型のパンチ類の かき上げ研削などでその優位性が発揮できる.

図 2 は、リニアモータを用いたスピードストローク研削 によるコンタリング研削結果の一例であり、このような三 次元形状も高能率に創成できる.

2.3 超高速研削

超高速で金属を切削すると、すくい面や剪断面の温 度が上昇して半溶融状態の薄い金属層が潤滑的な役 割を果たすことが期待される. そこで, 摩擦抵抗や剪断 抵抗の減少を狙った超高速切削実験が多くの研究者 によって行われている. 研削においても, 同様の効果を 期待した超高速研削が試みられている.

実験的には,空気の音速を超える相対速度で研削し た例もあるが, 実用化されているのは砥石周速度 V= 80~160m/s 程度の領域である. Vを増加させると, 砥 粒最大切込み深さが小さくなり, 研削抵抗も減少するの で,加工能率と研削比の増大が期待できる.

一方, 超高速研削を安全に行うには破壊強度の極 めて高い砥石が必要である. また, 回転数の3乗に比 例する風損(周囲の空気との摩擦による損失)があるこ とや, 研削点に超高圧で注水する必要があるので消費 電力が大きくなる.このため、超高速研削が広く用いら れるには、さらなる技術開発が求められる.

なお最近では、超高速研削とクリープフィード研削を

組み合わせた HEDG (High Efficient Deep Grinding) が実用化されている.この方法によって、耐熱合金製の タービンブレードが高能率に加工できる.

2.4 研削プロセスにおける無駄時間の排除

図3, 図4に, 筆者らが開発した砥石自動接近・テー ブル反転適応制御システムの概要を示す. 研削液を供 給しながら回転中の砥石を工作物に接近させると,高 周波のキャビテーション音が発生し、これがテーブルの 内部に設置した加速度センサに検知される. 音圧レベ ルは, 砥石の接近に伴って急増するから, トリガレベル を適切な値に設定しておけば、工作物表面にごく近い 位置(10~30µm)で砥石の接近を自動停止できる.

またこのシステムを用いれば,研削中の砥石が工作 物と離れるタイミングがわかるから、その瞬間にテーブ ルの運動方向を反転させれば,工作物形状に沿ったテ ーブルの反転制御が実現できる. 図5は,このシステム を用いたテーブル反転の様子を示したもので,図のL 字型工作物の場合,加工時間を約40%削減できる.

さらに, 砥石の接近制御機能とテーブルの反転制御 機能をともに生かすことで、実研削が始まるでの無駄時 間を大幅に削減できる. とはいえ, 砥石の接近制御がう まく機能しないと事故に繋がることから、さらなる信頼性 の向上が期待される.

以上の他に, 砥石と工作物の交換とこれに付随する

非加工時間を圧縮することもまた 重要である. グライディングセンタ 化によって解決できている部分も あるが, 残された重要な課題と言 えよう.

3. 超精密研削

3.1 回転と直線運動および位 置決めの超精密化

運動転写を基本とする工作機 械の回転軸には、数十μmの流体膜だけで軸を安定的に支持でき、かつ減衰性に優れた油静圧軸受が採用される例が多く、最良のものでnmオーダの回転精度が得られる.一方、砥石と工作物の相対位置を直線的に移動させる直動案内には、油静圧案内あるいは非常に高精度な V-V 転がり案内(図 6)が用いられ、サブミクロンの運動精度が得られている.

さらに、案内面の近傍に 超精密なリニアスケールな どを配置してフィードバック 制御することで、位置決め 精度とその再現性を高め ている.しかし、研削盤の 内部発熱、研削熱、研削 抵抗などのために加工中 における研削点の位置は 変動しやすく、その位置を サブミクロン単位でコントロ ールすることは不可能に近い.

そこで、加工途中に工作物の形状・寸法を高精度に 測定して補正加工を施すことが行われる。このプロセス を機上で行えば、工作物のつかみ直しに起因する誤差 が防げるから、加工面形状の機上測定装置が種々考 案されている。図7は、微小非球面形状の機上測定装 置の一例である。図中の計測プローブはエアベアリン グで保持され、その変位はレーザセンサで計測される。

3.2 微粒砥石による ELID 鏡面研削

仕上げ面粗さを向上させるには、砥粒の微細化が手っ取り早く、かつ有効である. そのため、多孔質の軟質

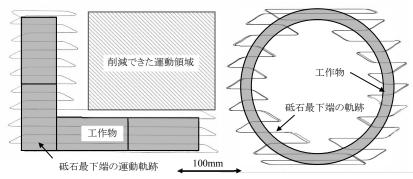


図 5 各種形状の工作物に対する砥石最下端の運動軌跡

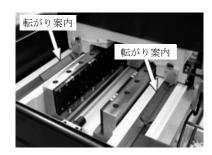


図 6 超精密 V-V 転がり案内 (田中)

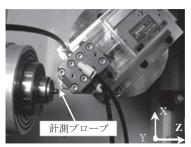


図 7 非球面形状の機上測定 装置の一例(鈴木)

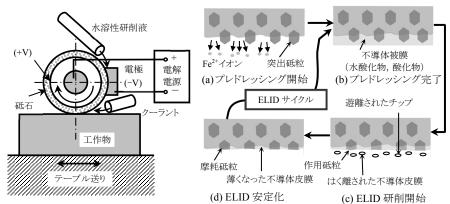


図 8 ELID 研削の概要(大森ら)

微粒砥石が鏡面仕上に多用されている.しかし,目詰まりが生じやすく,砥石の目立て間寿命や加工能率などの点で課題がある.

そこで大森らは、図8に示すELID研削法を開発・実用化している.この方法では、結合剤に鋳鉄などを用いた超砥粒ホイールを陽極とし、ホイールの表面に対向する陰極を電極間隙が0.1~0.3mmになるように設置して、弱導電性の研削液を供給する.研削に先立ち、両極に直流パルス電圧を印加して、砥石表面の結合剤だけを電解除去するプレドレッシングを行う[図中の(a)].結合剤の表面には電解に伴う不導体被膜が生成

されるため、次第に電解速度が低下し、プレドレッシン グは終了する(b). この電解を加工中にも行う(d)ことで、 目詰まりを抑えつつ研削を継続できる.この方法によっ て、SiC、WCなどの硬脆材料を高能率に鏡面加工でき る. さらにこの方式を、メタルボンド以外の砥石にも適用 するための検討が続けられている.

一方, 電子デバイス基板の加工においては金属イオ ンの汚染を嫌うことが多いため、電解作用に頼らなくて も超精密加工が能率的かつ連続して行える多孔質ビト リファイドボンドの微粒ダイヤモンドホイールを開発した 例(岡西)がある.しかしいずれの方法でも,機械的な 除去作用によって表面を創成している限り、無欠陥な 表面を得ることは不可能である.このため、この技術を CMP(Chemical Mechanical Polishing)の代わりに用い ることはできない.

3.3 砥粒配列砥石とトランケーション

図9に,筆者らが試作したダイヤモンド砥粒配列砥 石の概要を示す.この例では、粒度F60のダイヤモンド 砥粒を平均砥粒間隔が0.7mmになるように台金の外周 に配列している. 砥粒の配列方向は切削方向に対して 23.2° 傾けているので、連続切れ刃間隔は 5.35mm に なる. また, 任意の砥粒の切削ライン(たとえば図のa, b を結ぶ線)に隣接する切れ刃の切削ラインとの間隔は 92umになる. したがって, 砥石表面を極精密ツルーイ ング(研磨)して切れ刃逃げ面の直径が92µm以上にな るように摩滅させれば、工作物の全面がいずれかの切 れ刃の平坦面によって切削され, 鏡面が得られる.

一方, 平面研削や平フライス加工による仕上面の最 大高さ粗さ R_Z は、次式で与えられる.

$$R_z \propto \left\{ \frac{v}{V} \sqrt{\frac{1}{D}} \right\}^m \tag{1}$$

ここで、vはテーブル速度、Vは砥石周速度、Dは砥石 直径である. 上式の指数値 m は, 通常の研削砥石で は 0.4~0.5 であるのに対し、この砥石では 1.0 であった ことから、砥粒配列砥石は粗さの操作性に優れていると 言える. 図10は,この砥石でアルミニウム合金(A 5052)を研削した結果を示したもので、実質的にワンパ スで0.08μmRzの鏡面が得られている.

一般の超砥粒ホイールの場合にも, 切れ刃を高精度 に研磨(トランケーション) することによって鏡面仕上す ることができる(田牧). しかしいずれの場合も, 切れ刃 先端の研磨速度や使用時の摩耗速度は、結晶方位に

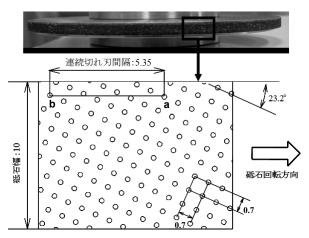


図 9 ダイヤモンド砥粒配列砥石(D200, 粒度 F60)の 外観と砥粒の配列状態

和松刀 THE LOCK 防衛大 精密加工研究室 防衛大 精密加工研究室 防衛

図 10 アルミニウム合金 A5052 の研削仕上面 $(0.08\mu mRz)$

よって大きく異なるから、切れ刃高さにはばらつきがあ るため, 光学デバイスとしての使用に耐えるような鏡面 を創成するのは難しい.

一方, CVD (Chemical Vapor Deposition)プロセスを 応用してごく微細な切れ刃を配列した微小研磨ブロック を創る試みや、単結晶あるいは焼結ダイヤモンド製の 微小ホイールの外周にレーザ加工を施して切れ刃を整 然と創成する試み(鈴木)などがある、これらが砥石と呼 べるのか疑問があるが、 超精密・微細加工を行うための 新しい取り組みであることに変わりはない.

4. おわりに

研削加工では, 仕上面の品質と加工能率が砥石の 性能に依存する割合が大きい. 幸い, 2016年5月号に 研削砥石に関する特集が組まれる予定なので、参考に していただきたい.

次回は,本稿で取り上げることができなかった,曲面 と微細形状の超精密加工について紹介するとともに、 各種固定砥粒加工のトピックスと複合(援用)研削につ いて述べ、本レクチャーを閉じることにしたい.